Factoring

Reporting Category Expressions and Operations

Topic Factoring polynomials

Primary SOL All.1d The student, given rational, radical, or polynomial expressions, will

factor polynomials completely.

Related SOL All.8

Materials

Graphing calculators

• Two attached handouts

Vocabulary

factor, prime, composite, greatest common factor, binomial, trinomial (earlier grades) sum and difference of two cubes, perfect square trinomial (AII.1d)

Student/Teacher Actions (what students and teachers should be doing to facilitate learning)

- 1. Review factoring, defining *factor* as both a noun and a verb. Show different ways to factor a composite number: e.g., 12 can be factored as $4 \cdot 3$, $6 \cdot 2$, or $2 \cdot 2 \cdot 3$.
- 2. Review multiplication of polynomial expressions. Focus on distributing a monomial and on multiplying two binomials. Stress that when multiplying two binomials, students should pay particular attention to the sum of the like terms that are combined.
- 3. Show examples of factoring out a greatest common factor.
- 4. Have students factor several trinomials in the form $ax^2 + bx + c$, where a = 1. Remind them that the focus is identifying two numbers with a given product, c, and a given sum, b.
- 5. Direct students to factor $2c^2 + 6c 20$. Some students will likely be confused. Stress the fact that the first step of factoring completely is to factor out the greatest common factor, if all terms have a common factor. Proceed to factoring the polynomial completely.
- 6. Have students factor several polynomial expressions, some with a common factor only, some trinomials in which a = 1, and some trinomials in which a is a common factor of all three terms.
- 7. Show additional examples of multiplying binomials that have leading coefficients other than one. These examples should remain on the board to reference during step #8.
- 8. Demonstrate factoring trinomials in which a > 1. Include examples of prime expressions.
- 9. Through examples of multiplication of binomials, lead students to discover the following factor patterns:
 - Difference of two squares: $a^2 b^2 = (a b)(a + b)$
 - Perfect square trinomial: $a^2 + 2ab + b^2 = (a+b)(a+b) = (a+b)^2$
 - Sum of two cubes: $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
 - Difference of two cubes: $a^3 b^3 = (a b)(a^2 + ab + b^2)$

- 10. Distribute copies of the attached Factor Patterns handout, and have students complete it in small groups. Direct them to identify common factors and special patterns before factoring.
- 11. Distribute copies of the attached Factor, Factor, Factor! handout, and have students work in pairs to complete it. Then, have pairs share their steps to factoring the problems.

Assessment

- Questions
 - When can the sum of two squares be factored?
 - What are the four special factor patterns?
- **Journal/Writing Prompts**
 - Explain why we do not consider $w^2 + 25$ a perfect square binomial.
 - o Write a song to help you remember the steps taken to completely factor a polynomial expression.

Extensions and Connections (for all students)

Have students graph the following functions on their calculators, one at a time:

 $y = x^2 - 2x - 15$ $y = x^2 + 6x + 9$ $y = x^2 - 4$ $y = 4x^2 + 12x + 5$

Then, have them factor the polynomial expressions. Finally, have them discuss in pairs the connections that can be made between factors and x-intercepts.

• Give students several expressions in the form $ax^2 + bx + c$, and have them evaluate $b^2 - 4ac$.

Strategies for Differentiation

- Use algebra tiles to model factoring trinomials and the difference of two squares.
- Create a matching game that uses cards showing expressions in expanded form and corresponding cards showing the expressions in factored form.
- Have students use graphing calculators to find factors of a number. For example, to find the factors of 36, have them graph $y = \frac{36}{x}$ and use the table to find integral (x,y) pairs.
- Use a Tic-Tac-Toe grid to illustrate factoring a trinomial. For example, the grid below illustrates a method for factoring $x^2 + 6x + 5$.

- Have students use an acronym to remember the sign of the factored form of the sum or difference of two cubes.
- Use either of the handouts to create a game, such as a Tic-Tac-Toe game or a matching game.

Factor Patterns

Factor the following expressions completely.

1.
$$y^2 - 121$$

2.
$$4a^2 - 49$$

3.
$$81x^2 - 25y^2$$

4.
$$200-2w^2$$

5.
$$m^2 - 10m + 25$$

6.
$$4f^2 + 12f + 9$$

7.
$$49x^2 - 28xy + 4y^2$$

8.
$$3p^2 - 30p + 75$$

9.
$$c^3 - 8$$

10.
$$2y^3 + 128$$

11.
$$5-5n^3$$

12.
$$4u^3 - 108w^{12}$$

Factor, Factor!

Factor the following expressions completely.

1.
$$m^2 + 2m - 15$$

2.
$$x^2 - 16$$

3.
$$9a^2 + 6a - 8$$

4.
$$v^3 + 1$$

5.
$$4w^2 + 12w + 9$$

6.
$$k^2 + 2km + m^2$$

7.
$$128-2x^2$$

8.
$$3q^2 + 3q + 12$$

9.
$$8h^2 - 8h - 6$$

10.
$$9r^3 - 27$$

11.
$$225n^4 - p^6$$

12.
$$16c^2 + 40cd + 25d^2$$

13.
$$4y^2 + 4$$

14.
$$a^6 - b^6$$